Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes

نویسندگان

  • Alexandre Robicquet
  • Amir Sadeghian
  • Alexandre Alahi
  • Silvio Savarese
چکیده

Humans navigate crowded spaces such as a university campus by following common sense rules based on social etiquette. In this paper, we argue that in order to enable the design of new target tracking or trajectory forecasting methods that can take full advantage of these rules, we need to have access to better data in the first place. To that end, we contribute a new large-scale dataset that collects videos of various types of targets (not just pedestrians, but also bikers, skateboarders, cars, buses, golf carts) that navigate in a real world outdoor environment such as a university campus. Moreover, we introduce a new characterization that describes the “social sensitivity” at which two targets interact. We use this characterization to define “navigation styles” and improve both forecasting models and state-of-the-art multi-target tracking whereby the learnt forecasting models help the data association step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Social Navigation in Crowded Complex Scenes

When humans navigate a crowed space such as a university campus or the sidewalks of a busy street, they follow common sense rules based on social etiquette. In this paper, we argue that in order to enable the design of new algorithms that can take fully advantage of these rules to better solve tasks such as target tracking or trajectory forecasting, we need to have access to better data in the ...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Modeling Collective Crowd Behaviors in Video

Crowd behavior analysis is an interdisciplinary topic. Understanding the collective crowd behaviors is one of the fundamental problems both in social science and natural science. Research of crowd behavior analysis can lead to a lot of critical applications, such as intelligent video surveillance, crowd abnormal detection, and public facility optimization. In this thesis, we study the crowd beh...

متن کامل

Robust Recognition of Specific Human Behaviors in Crowded Surveillance Video Sequences

We describe a method that can detect specific human behaviors even in crowded surveillance video scenes. Our developed system recognizes specific behaviors based on the trajectories created by detecting and tracking people in a video. It detects people using an HOG descriptor and SVM classifier, and it tracks the regions by calculating the two-dimensional color histograms. Our system identifies...

متن کامل

Contextual anomaly detection in crowded surveillance scenes

This work addresses the problem of detecting human behavioural anomalies in crowded surveillance environments. We focus in particular on the problem of detecting subtle anomalies in a behaviourally heterogeneous surveillance scene. To reach this goal we implement a novel unsupervised context-aware process. We propose and evaluate a method of utilising social context and scene context to improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016